Station 1:

Provide a justification (definition, property, postulate or theorem) for each statement.

1. If $\overline{\mathrm{BH}} \perp \overline{\mathrm{DC}}$, then $\angle \mathrm{DCH}$ is a right angle.
2. $F C+C G=F G$
3. If C is the midpoint of $\overline{F G}$, then $F C=C G$.

4. $\mathrm{m} \angle \mathrm{BCG}+\mathrm{m} \angle \mathrm{GCH}=180^{\circ}$
5. If $\angle D C H$ is a right angle, then $\angle D C H=90^{\circ}$.
6. $m \angle D C G+m \angle G C H=m \angle D C H$
7. If $\angle B C D$ is a right angle, then $\overline{\mathrm{BH}} \perp \overline{\mathrm{DC}}$.
8. $\angle B C F \cong \angle G C H$

Station 2:

Provide a justification (definition, property, postulate or theorem) for each statement.
9. If $\mathrm{m} \angle \mathrm{BCF}+\mathrm{m} \angle \mathrm{FCH}=\mathrm{m} \angle \mathrm{FCH}+\mathrm{m} \angle \mathrm{HCG}$, then $\mathrm{m} \angle \mathrm{BCF}=\mathrm{m} \angle \mathrm{HCG}$.
10. If $\angle 3$ and $\angle 1$ are complementary angles, then $m \angle 3+m \angle 1=90^{\circ}$.

11. If $m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$, then $m \angle 1=m \angle 3$.
12. If C is the midpoint of $\overline{F G}$, then $F C=\frac{1}{2} F G$.
13. If $\overrightarrow{C G}$ bisects $\angle D C H$, then $\angle D C G \cong \angle G C H$.
14. If $\mathrm{m} \angle \mathrm{DCG}+\mathrm{m} \angle \mathrm{FCH}=180^{\circ}$, then $\angle \mathrm{DCG}$ and $\angle \mathrm{FCH}$ are supplementary angles.
15. If $\overrightarrow{C G}$ bisects $\angle D C H$, then $m \angle D C G=\frac{1}{2} m \angle D C H$.

Station 3:

16. If $D F=2 x-1, F G=2 x+7$ and $D G=6 x-8$, find the value of $x, D F, F G$ and $D G$.

17 . If $m \angle M N L=14 x+2$ and $m \angle L N P=45 x+1$, find the value of $x, m \angle M N L, m \angle L N P$ and $m \angle M N P$.

Station 4:

18. $\angle J K M$ and $\angle M K L$ are complementary angles. If $m \angle J K M=2 x$ and $m \angle M K L=6 x+10$, find the value of $x, m \angle J K M$, $m \angle M K L$ and $m \angle J K L$.

19. If $m \angle Q S R=7 x-5$ and $m \angle T S P=6 x+3$, find the value of $x, m \angle Q S R, m \angle T S P, m \angle Q S T$ and $m \angle R S P$.

Station 5:

20. Given: $A B=B D ; B C=B D$ Prove: B is the midpoint of $A C$

Steps	Reasons
1.	
2.	substitution
3.	

Station 6:

21. Given: WE = ST Prove: WS = ET

Steps	Reasons
1.	
2. $\mathrm{WE}+\ldots=\mathrm{ST}+\ldots$	addition property
3. $\mathrm{WE}+\mathrm{ES}=-\ldots$	
ST $+\mathrm{ES}=\ldots$	
4.	

Station 7:

22. Given: 1 and 3 are complementary. Prove: $\overline{\mathrm{BH}} \perp \overline{\mathrm{DC}}$

Steps	Reas ons
1.	given
2.	def of complementary
$3 . \mathrm{m} \angle 1=\mathrm{m} \angle 2$	
$4 . \mathrm{m} \angle 2+\mathrm{m} \angle 3=90^{\circ}$	
$5 . \mathrm{m} \angle 2+\mathrm{m} \angle 3=\mathrm{m} \angle \mathrm{DCH}$	
6.	substitution steps 4 \& 5
$7 . \angle D C H$ is a right angle	
8.	

Station 8:

23. Given: $\overline{\mathrm{BC}} \perp \overline{\mathrm{CD}}$
Prove: $\angle B C F$ and $\angle F C D$ are complementary.

Steps	Reasons
1.	
2. $\angle \mathrm{BCD}$ is a right angle	
3. $\mathrm{m} \angle \mathrm{BCD}=90^{\circ}$	definition of a rt angle
4.	angle addition postulate
5.	substitution
6.	

Station I:

1. definition of perpendicular
2. segment addition
3. definition of midpoint
4. linear pair
5. definition of right angle
6. angle addition
7. definition of right angle
8. vertical angles

Station 2:
9. subtraction
10. definition of complementary
11. substitution/transitive
12. definition of midpoint
13. definition of bisector
14. definition of supplementary
15. definition of angle bisector

Station 3:
16. $x=7, D F=13, F G=21, D G=34$
$17 . \mathrm{x}=3, \mathrm{~m} \angle \mathrm{MNL}=44, \mathrm{~m} \angle \mathrm{LNP}=136, \mathrm{~m} \angle \mathrm{MNP}=180$
Station 4:
18. $x=10, m \angle J K M=20, m \angle M K L=70, m \angle J K L=90$
19. $x=8, m \angle Q S R=51, m \angle T S P=51, m \angle Q S T=129$, $m \angle R S P=129$

Station 5:
20. $A B=B D ; B C=B D$
given
$A B=B C$
B is the midpoint of $A C$
definition of midpoint
Station 6:
21. $\mathrm{WE}=\mathrm{ST}$
given
ES, ES
WS, ET
$W S=E T$
segment addition definition of congruent

Station 7:
22. $\angle 1$ and $\angle 3$ are complementary

$$
\mathrm{m} \angle 1+\mathrm{m} \angle 3=90
$$

$$
\frac{\mathrm{m} \angle \mathrm{DCH}}{\mathrm{BH} \perp \overline{\mathrm{DC}}}=90
$$

Station 8:
23. $\overline{\mathrm{BC}} \perp \overline{\mathrm{CD}}$


```
m}\angleBCF+m\angleFCD=9
\angleBCF & }\angleFCD are comp
```

given
def of perpendicular
def of complementary

